
Enterprise COBOL V6.1:
What’s New?

Tom Ross ‘Captain COBOL’
February 29

What new features are in Enterprise COBOL V6?

� Improved compiler capacity to allow compilation and
optimization of very large COBOL programs

�COBOL 2002: ALLOCATE and FREE statements

�COBOL 2002: INITIALIZE … TO VALUE and more!

�JSON GENERATE statement

�New and modified compiler options

�COBOL 2002: VSAM "0x" file status code current 97

� Improved memory requirements of TABLE SORT and
performance improvements

2

Improved Compiler Capacity

�COBOL 5.x is unable to compile very large programs

o Analysis shows that the backend runs out of memory

o Backend performs memory and compute intensive operations such
as program analysis, optimization and code-generation

o Optimization engine scales back when it sees that it is running low
on available memory at OPT(1|2)

o However there are certain programs which do not compile even at
OPT(0)

3

�COBOL V6.1 has an improved version of the code
generator/optimizer

o Compile time will be somewhat slower due to costs of AMODE 64

o Backend invokes certain COBOL runtime library routines during
compilation

o Since the COBOL runtime is AMODE 31 there will be some
overhead of marshalling and un-marshalling of data passed between
the AMODE 64 backend and AMODE 31 runtime.

o Future release of the product will ship with a compatible runtime and
recover from this compile-time degradation

�We think this is a reasonable short term trade off to get all
customer code compiling

4

Improved Compiler Capacity

�Compiler is now sensitive to z/OS MEMLIMIT setting

� In Enterprise COBOL V6, the compiler may start using storage above
the 2GB BAR to compile very large programs.

�This means that the z/OS MEMLIMIT parameter would have to be set
to a non-zero value. The z/OS default for MEMLIMIT is 2GB.

�How much to increase MEMLIMIT depends on many factors, such as
OPT option level, size of program, complexity of program, and if
certain language features are repeated. Some large programs can
compile with a small amount memory, and some smaller programs
might need a lot. The indication that you do not have enough (for
instance, if your MEMLIMT setting is 0) is the compiler error message:

IGYCB7145-U Insufficient memory in the compiler to continue
compilation.

5

Improved Compiler Capacity

ALLOCATE statement

The ALLOCATE statement obtains dynamic storage.
Syntax:

• The data item referenced by data-name-1 shall be an 01 or
77 LINKAGE SECTION data item.

• Data-name-2 reference a data item of USAGE POINTER.
• If DATA(24) option is specified the storage will be obtained

below the 16M line.

6

ALLOCATE statement

• ALLOCATE … INITIALIZED
• If both the INITIALIZED phrase and arithmetic-

expression-1 are specified, all bytes of the allocated
storage are initialized to binary zeros.

• If both the INITIALIZED phrase and data-name-1 are
specified, the allocated storage is initialized as if an
INITIALIZE data-name-1 WITH FILLER ALL TO VALUE
THEN TO DEFAULT statement were executed.
– Note: This implies that a VALUE clause on a LINKAGE

SECTION item is no longer just a comment!

7

ALLOCATE statement

Examples:
01 ptr1 USAGE POINTER.
01 var1 PIC X(500).

LINKAGE SECTION.
01 dn1 pic x(1000).

ALLOCATE dn1
ALLOCATE dn1 INITIALIZED RETURNING ptr1.

ALLOCATE 1000 CHARACTERS RETURNING ptr1.
ALLOCATE length of var1 CHARACTERS RETURNING ptr1.

ALLOCATE function length (var1) +200 CHARACTERS
RETURNING ptr1.

8

FREE statement

The FREE statement releases dynamic storage
previously obtained with an ALLOCATE statement.

Syntax:
FREE { data-name-1 } …

The data item referenced by data-name-1 shall be of
USAGE POINTER.

9

FREE statement

Example:

01 ptr1 USAGE POINTER.

ALLOCATE 1000 CHARACTERS RETURNING ptr1.
.
.
.
FREE ptr1.

10

INITIALIZE statement

The INITIALIZE statement sets selected categories of data fields to
predetermined values. The INITIALIZE statement is functionally
equivalent to one or more MOVE statements.
INITIALIZE { identifier-1 } ... [WITH FILLER]
[{ ALL | category-name } TO VALUE]

[THEN REPLACING { category-name DATA BY { identifier-2 | literal-1} }
…]
[THEN TO DEFAULT]

• Where category-name is:
� ALPHABETIC
� ALPHANUMERIC
� ALPHANUMERIC-EDITED
� NATIONAL
� NATIONAL-EDITED

11

� NUMERIC
� NUMERIC-EDITED
� DBCS
� EGCS

INITIALIZE statement

INITIALIZE { identifier-1 } ... [WITH FILLER]
[{ ALL | category-name } TO VALUE]
[THEN REPLACING { category-name DATA BY { identifier-2 | literal-1} } …]
[THEN TO DEFAULT]

6 a. If the data item qualifies as a receiving-operand because of the VALUE phrase:

– The sending-operand is determined by the literal in the VALUE clause specified in
the data description entry of the data item.
If the data item is a table element, the literal in the VALUE clause that
corresponds to the occurrence being initialized determines the sending-operand.
The actual sending-operand is a literal that, when moved to the receiving-operand
with a MOVE statement, produces the same result as the initial value of the data
item as produced by the application of the VALUE clause.

12

INITIALIZE statement

INITIALIZE { identifier-1 } ... [WITH FILLER]
[{ ALL | category-name } TO VALUE]

[THEN REPLACING { category-name DATA BY { identifier-2 | literal-1} } …]
[THEN TO DEFAULT]

6 b. If the data item does not qualify as a receiving-operand because of the
VALUE phrase, but does qualify because of the REPLACING phrase,
the sending-operand is the literal-1 or identifier-2 associated with the
category specified in the REPLACING phrase.

6 c. If the data item does not qualify in accordance with general rules 6a
and 6b, the sending-operand used depends on the category of the
receiving-operand as follows:

13

INITIALIZE statement

14

Receiving operand Figurative constant

Alphabetic SPACES

Alphanumeric SPACES

Alphanumeric-edited SPACES

National SPACES

National-edited SPACES

Numeric ZEROES

Numeric-edited ZEROES

JSON GENERATE

JSON GENERATE identifier-1 FROM identifier-2
[COUNT [IN] identifier-3]
[NAME [OF] {identifier-4 [IS] literal 1}...
[SUPPRESS {identifier-5}...]
[[ON] EXCEPTION imperative-statement-1]
[NOT [ON] EXCEPTION imperative-statement-2]

[END-JSON]

• Very similar to XML GENERATE

15

Example of output….

JSON GENERATE json-text FROM G

01 G.
05 h.

10 a pic x(10) Value ‘Eh?’.
10 3_ pic 9 Value 5.
10 C-c pic x(10) Value ‘See’.

{“G": {“h": {“a": "Eh?", "3_": 5, “C-c": "See"}}}

16

JSON GENERATE

New and modified compiler options

• The new VSAMOPENFS(COMPAT|SUCC) option allows
you to change File Status=97 into File Status=00 for
certain VSAM OPEN statements.

• The new SUPPRESS|NOSUPRESS option enables or
disables the SUPPRESS phrase of COPY statements.
– Longtime SHARE user requirement!

17

New and modified compiler options

• The new SSRANGE(ZLEN|NOZLEN) suboption allows a 0-
length reference modification.
– Code checks for length >= 0 with ZLEN
– Code checks for length > 0 with NOZLEN, like all previous

COBOL compilers
– Quite a few users could not use SSRANGE because of this zero-

length reference modification restriction
– EGL (Visual Gen) can now use SSRANGE(ZLEN) !

• The diagnostic message for the ZONECHECK(MSG) compiler
option is improved by adding the data item contents for the
offending data item and also adding the program name of the
program that contained the offending data item.

18

New and modified compiler options

• The LVLINFO installation option has been removed and
replaced by a 7-character build-level identifier, of the
format PYYMMDD, that is added to the compiler listing
header.

• The build-level identifier is placed in locations that
previously held the following LVLINFO data:
– Listing header
– Signature information bytes
– ADATA field called PTF Level

19

FILE STATUS 97

�This file status applies to VSAM during OPEN

� The file was successfully opened, even though the returned
status code was non-zero in previous COBOL releases

� The new VSAMOPENFS(SUCC) compiler option allows you to
change File Status=97 into File Status=00 for these VSAM
OPEN statements

� The new VSAMOPENFS(COMPAT) compiler option keeps
compatible behavior of File Status=97 for OPEN statements
that have “File integrity verified”

20

Table Sort Improvements and
Performance Improvements

�The Table Sort feature was introduced in COBOL V5R2.
The COBOL library routine doing the actual sorting currently
requires a fair amount of storage as work area.
Improvements to reduce storage requirements of this
routine were made.

–Some performance tuning was also done

�Performance tuning on INSPECT, UNSTRING and
SEARCH ALL (when searching large tables).

–Input to INSPECT and UNSTRING can be very long for some
programs, especially those that involve XML processing. Tuning was
done on theses library routines so that performance can scale up to
very large input

21

Product-related enhancements
� Enterprise COBOL for z/OS, V6.1 delivers the following

runtime and performance-related enhancements:
o WORKING-STORAGE will be acquired from HEAP

storage in all cases, so that there are (almost) no
exceptions to when the STORAGE(xx) runtime option will
affect WORKING-STORAGE.
� SPANNED files are the exception

o In the previous version, this was only true for CICS and
some special non-CICS cases.

� Reduced storage requirements and performance tuning is
implemented in Table SORT.

� Performance improvements are implemented for
INSPECT, UNSTRING, and SEARCH ALL statements

22

QUESTIONS?

23

